

FIXI3D 2.0 ANCRAGES POUR PANNEAUX EN BÉTON ARCHITECTONIQUE

INTRODUCTION

La façade ventilée revêtue de béton préfabriqué grand format est durable, de haute qualité et permet une conception flexible de facade avec une grande variété d'options architecturales.

Les panneaux de façade en béton préfabriqué sont fixés par des ancrages ponctuels à une structure en béton, à une charpente métallique ou encore à une structure en CLT..

Sachant que les ancrages traversent l'isolation du bâtiment, l'impact thermique de ceux-ci est pris en compte, et minimisé.

L'épaisseur des panneaux de façade dépend notamment des dimensions, de la structure de surface, de la classe d'exposition et de la conception structurelle.

Que demande-t-on aux ancrages d'une façade en panneaux de béton préfabriqué ?

- 1 Les fixations doivent supporter les forces engagées (poids propre, vent, séisme)
- 2 Le système doit minimiser les ponts thermiques
- 3 Le système doit être conforme aux règles de protection des habitants vis-à-vis de l'incendie
- 4 Le système doit permettre d'ajuster facilement les parements lors de la pose
- 5 Le système doit minimiser les coûts de maintenance en résistant à la corrosion

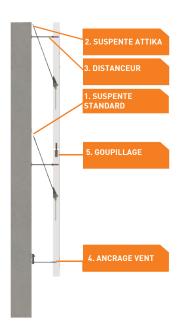
Pour les raisons mentionnées ci-dessus l'acier inoxydable est la meilleure solution car elle offre :

- une durée de vie quasiment illimitée dans le temps
- d'excellentes performances mécaniques y compris aux températures d'incendie
- une conductivité thermique faible par rapport aux autres métaux
- une bonne soudabilité et déformabilité
- une optimisation de la quantité de fixations par m² améliorant ainsi le bilan thermique

Qu'apportent les solutions de FIXINOX?

- près de 30 ans d'expérience dans une activité pointue.
- l'intégration en un seul site de la conception, du calcul et de la fabrication.
- -une étude complète de votre projet comprenant :
 - l'étude de stabilité des fixations des panneaux de parement
- la vérification de la conformité aux normes
- l'optimisation des conditions de pose sur site
- la préparation d'un quide de calepinage des ancrages
- le respect des contraintes de chevillage
- la réalisation en interne des plans d'exécution
- l'adaptation du design aux conditions de la fabrication
- la mesure des ponts thermiques engendrés par les fixations
- le contrôle de la qualité par l'équipe d'ingénieurs qui s'est chargée de la conception

DESCRIPTION FIXI3D 2.0


La suspente Fixi3D 2.0 permet de suspendre des panneaux béton de différentes tailles à la structure du bâtiment. La suspente est composée d'une part, d'un insert à couler dans l'élémént préfabriqué et d'autre part d'un système de suspension qui permettra de fixer l'ensemble à la structure portante.

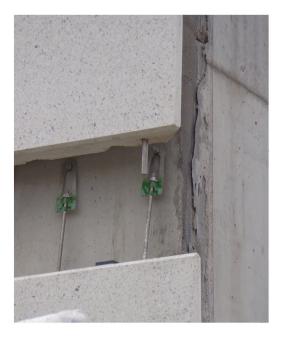
Les suspentes sont adaptées aux types de structures rencontrées.

En complément aux suspentes, des distanceurs, des ancrages, des goupillages, vents et/ou des ancrages anti-sismiques peuvent être nécessaires.

Notre bureau d'étude vous conseille, vous quide et dimensionne les éléments nécessaires pour votre projet.

ELÉMENTS DE FIXATION

- 1. Suspente standard: pour une fixation en plein voile.
- 2. Suspente attika: pour une fixation au niveau d'une dalle ou d'une tête de voile.
- 3. Distanceur : maintient le panneau à distance du support pour garantir l'alignement.
- 4. Ancrage vent : fixation empêchant le soulèvement du panneau sous l'action du vent.
- 5. Goupillage : assure une liaison entre les panneaux superposés et la transmission des efforts transversaux perpendiculaires à la façade.



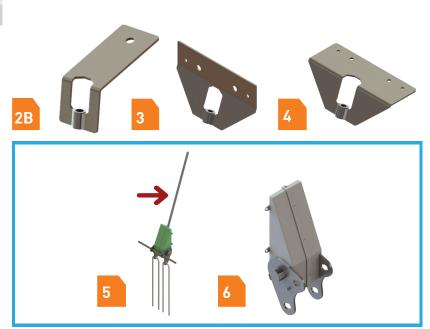
AVANTAGES:

- Délai de livraison très court
- Rapidité de l'exécution lors de la pose du parement
- Possibilités de **réglage dans les trois dimensions** lors du montage
- Calepinage et instructions de montage par notre bureau d'études sur demande
- Tous les composants métalliques du système de fixation des panneaux architetoniques sont
- les ponts thermiques. Cela contribue ainsi à réduire les coûts liés à la consommation d'énergie

INFORMATIONS NÉCESSAIRES POUR LE CALCUL DE L'OFFRE :

- Plans des élévations, des étages et des coupes
- Dimensions des panneaux (hauteur, largeur, épaisseur)
- Dimension du vide (isolant + lame d'air)
- Nature et qualité du support
- Caractéristiques du projet vis-à-vis de l'aléa sismique si d'application

UBAtc


2. SUSPENTES FIXI3D 2.0

CLASSE DE CHARGE (kN)	CODE COULEUR
5,0	NOIR
10,0	ROUGE
15,0	VERT
20,0	BLANC
25,0	
35,0	BLEU
45,0	ORANGE
60,0	ROSE

DÉSIGNATION.

- 1. Platine simple
- 1b. Platine simple 45 et 60 kN
- 2. Platine simple attika
- 2b. Platine simple attika 45 et 60 kN
- 3. Platine double droite
- 4. Platine double attika
- 5. Tige filetée
- 6. Insert

La suspente Fixi3D 2.0 est l'élément porteur d'un système réglable de fixation de panneaux de parement en béton architectonique.

- Les suspentes peuvent être vendues complètes ou en pièces détachées (platines, tiges, inserts).
- Chaque composant de la suspente est marqué par une couleur qui correspond à sa classe de charge.
- Pour chaque classe, il existe 4 formes de platines qui s'adaptent aux différentes situations sur chantier.
- Les autres éléments (tiges, inserts) restent identiques

CONNECTEURS INVISIBLES ET ANCRAGES

ANCRAGES POUR PANNEAUX EN BÉTON ARCHITECTONIQUE

FIXI3D PLATINE STANDARD

ARTICLE RÉFÉRENCE SUSPENTE COMPLÈTE	ARTICLE RÉFÉRENCE PLATINE SEULE	CLASSE DE CHARGE (kN)	VIDE MIN Ev (mm)	ÉPAISSEUR MIN DU PANNEAU Ep (mm)	ÉPAISSEUR MIN DU SUPPORT EN BÉTON Eb (mm)*
04IM-2-001-5,0	04M-2-010-5,0	5,0	60	70	100
04IM-2-001-10,0	04M-2-010-10,0	10,0	60	70	100
04IM-2-001-15,0	04M-2-010-15,0	15,0	60	80	140
04IM-2-001-20,0	04M-2-010-20,0	20,0	80	80	140
04IM-2-001-25,0	04M-2-010-25,0	25,0	80	100	170
04IM-2-001-35,0	04M-2-010-35,0	35,0	80	100	220
04IM-2-001-45,0	04M-2-010-45,0	45,0	80	120	220
04IM-2-001-60,0	04M-2-010-60,0	60,0	90	120	220

Valeur indicative, elle dépendra de la qualité du support et du type de fixation utilisée

FIXI3D PLATINE SIMPLE ATTIKA

ARTICLE RÉFÉRENCE SUSPENTE COMPLÈTE	ARTICLE RÉFÉRENCE PLATINE SEULE	CLASSE DE CHARGE (kN)	VIDE MIN Ev (mm)	ÉPAISSEUR MIN DU PANNEAU Ep (mm)	ÉPAISSEUR MIN DU SUPPORT EN BÉTON Eb (mm)*
04IM-2-002-5,0	04M-2-015-5,0	5,0	60	70	100
04IM-2-002-10,0	04M-2-015-10,0	10,0	60	70	100
04IM-2-002-15,0	04M-2-015-15,0	15,0	60	80	140
04IM-2-002-20,0	04M-2-015-20,0	20,0	80	80	140
04IM-2-002-25,0	04M-2-015-25,0	25,0	80	100	170
04IM-2-002-35,0	04M-2-015-35,0	35,0	80	100	220
04IM-2-002-45,0	04M-2-015-45,0	45,0	80	120	220
04IM-2-002-60,0	04M-2-015-60,0	60,0	90	120	220

Valeur indicative, elle dépendra de la qualité du support et du type de fixation utilisée

FIXI3D PLATINE DOUBLE DROITE

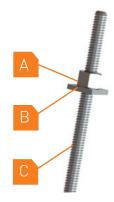
ARTICLE RÉFÉRENCE SUSPENTE COMPLÈTE	ARTICLE RÉFÉRENCE PLATINE SEULE	CLASSE DE CHARGE (kN)	VIDE MIN Ev (mm)	ÉPAISSEUR MIN DU PANNEAU Ep (mm)	ÉPAISSEUR MIN DU SUPPORT EN BÉTON Eb (mm)*
04IM-2-003-25,0	04M-2-026-25,0	25,0	80	100	170
04IM-2-003-35,0	04M-2-026-35,0	35,0	80	100	220
04IM-2-003-45,0	04M-2-026-45,0	45,0	80	120	220
04IM-2-003-60,0	04M-2-026-60,0	60,0	90	120	220

Valeur indicative, elle dépendra de la qualité du support et du type de fixation utilisée

FIXI3D PLATINE DOUBLE ATTIKA

ARTICLE RÉFÉRENCE SUSPENTE COMPLÈTE	ARTICLE RÉFÉRENCE PLATINE SEULE	CLASSE DE CHARGE (kN)	VIDE MIN Ev (mm)	ÉPAISSEUR MIN DU PANNEAU Ep (mm)	ÉPAISSEUR MIN DU SUPPORT EN BÉTON Eb (mm)*
04IM-2-005-25,0	04M-2-027-25,0	25,0	80	100	170
04IM-2-005-35,0	04M-2-027-35,0	35,0	80	100	220
04IM-2-005-45,0	04M-2-027-45,0	45,0	80	120	220
04IM-2-005-60,0	04M-2-027-60,0	60,0	90	120	220

Valeur indicative, elle dépendra de la qualité du support et du type de fixation utilisée


TIGE FILETÉE

La tige filetée est composée de :

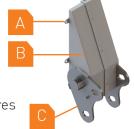
A. un écrou

B. un plat

C. une tige filetée

La longueur de la tige est déterminée suivant le vide, voir tableau page 19.

ARTICLE RÉFÉRENCE TIGE À OEIL	CLASSE DE CHARGE (kN)	METRIONE LIGE					
04M-2-035-5,0	5,0	M8	16				
04M-2-035-10,0	10,0	M10	16				
04M-2-035-15,0	15,0	M12	20				
04M-2-035-20,0	20,0	M12	20				
04M-2-035-35,0	35,0	M16	24				
04M-2-035-45,0	45,0	M20	30				
04M-2-035-60,0	60,0	M20	30				


INSERT

L'insert est composé de :

A. une réservation en PVC recyclé et recyclable

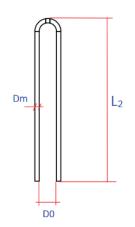
B. une chape de traction en attente

C. oreilles permettant le passage des armatures complémentaires

Il est coulé, en préfabrication, dans les panneaux architectoniques. Il permet le réglage latéral sur chantier.

ARTICLE RÉFÉRENCE INSERT	CLASSE DE CHARGE (kN)	EPAISSEUR MINIMALE DU PANNEAU Ep (mm)
041-2-030-5,0	5,0	70
041-2-030-8,0	10,0	70
041-2-030-11,5	15,0	80
041-2-030-16,0	20,0	80
041-2-030-22,0	25,0	100
041-2-030-27,0	35,0	100
041-2-030-34,0	45,0	120
041-2-030-56,0	60,0	120

À noter : Lors du montage sur chantier, il important de graisser les filets à l'aide d'un produit adapté (type Molykote) afin d'éviter les soudures froides. Le réglage se fera toujours en descendant le panneau.

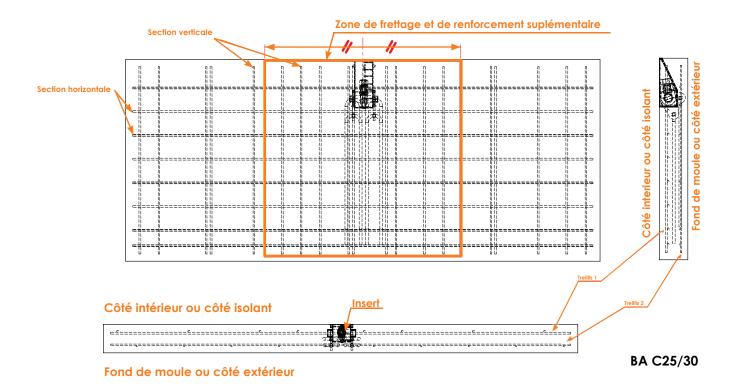

ARMATURES À PRÉVOIR POUR LA PARTIE INSERT.

Lors du placement de l'insert, il est indispensable de prévoir des armatures complémentaires reprises dans les tableaux ci-dessous.

Deux options sont offertes pour les armatures complémentaires à prévoir. Pour les modèles de 5 à 20 kN, une barre droite est suffisante. Lorsque la distance au bord est trop faible, 2 ou 4 barres en U sont exigées.

В	ARRE DE SCELLEM	ENT EN	I U - NO	MBRE ET DIMENSI	ONS
CLASSE (kN)	LONGUEUR TOTALE L ₁ (mm)	D0 (mm)	D _m (mm)	HAUTEUR PLIÉE L ₂ (mm)	NOMBRE
5,0	460	24	6	220	
10,0	520	24	6	250	2*
15,0	630	32	8	300	Δ,
20,0	730	32	8	350	
25,0	835	40	10	400	
35,0	935	40	10	450	
45,0	1040	48	12	500	4
60,0	1140	48	12	550	

^{*}il est recommandé d'utiliser 4 barres en U pour des distances au bord plus faibles

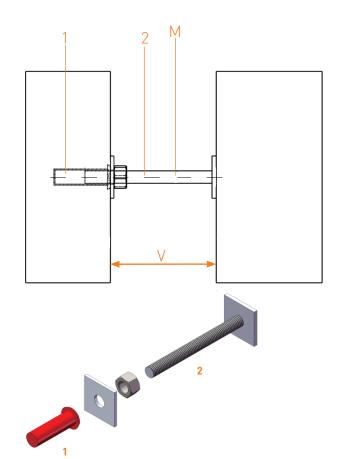

BARRES DE SCELLEMENT DROITES – NOMBRE ET DIMENSIONS											
CLASSE DE RÉSISTANCE (KN)	LONGUEUR TOTALE L (mm)	D (mm)	NOMBRE								
5,0	200	8									
10,0	250	8	1								
15,0	250	10									
20,0	300	10									

FERRAILLAGE MINIMUM DES ÉLÉMENTS BÉTON

CLASSE	TREILLIS SUR TOUTE LA SURFACE DU PANNEAU	SENS DES ARMATURES	SECTION MINIMALE DES TREILLIS (cm²/m)	DISPOSI- TION AR- MATURES TREILLIS 1 ET TREILLIS 2	SURFACE DE LA ZONE DE FRETTAGE UNIQUE- MENT COTÉ INTÉRIEUR	SECTION D'AR- MATURE SUPPLÉ- MENTAIRE (cm²/m)	SECTION D'ARMA- TURE TOTALE (cm²/m)
	Treillis 1	Section horizontale	1,42	diam. 6 tous les 200mm	X	Х	1,42
5 kN et		Section verticale	1,42	diam. 6 tous les 200mm		X	1,42
10 kN	Treillis 2	Section horizontale	X	X	X	Χ	X
	TTCILLIS Z	Section verticale	X	X	Λ	Χ	Χ
	Treillis 1	horizontale 1,42 les		diam. 6 tous les 200mm	X	X	1,42
15 kN et 20	cN	Section verticale	1,42	diam. 6 tous les 200mm	^	X	1,42
kN	Treillis 2	Section horizontale	X	X	X	X	X
	Heitus Z	Section verticale	X	X	^	X	X
	Treillis 1	Section horizontale	2,5	diam. 8 tous les 200mm	0,85 x 0,85 m	2,5	5
35 KN ET 25	Heillis I	Section verticale	2,5	diam. 8 tous les 200mm		0	2,5
KN	Treillis 2	Section horizontale	Χ	X	80	Χ	X
	Heitus Z	Section verticale	X	X	00	Χ	X
	Treillis 1	Section horizontale	2,5	diam. 8 tous les 200mm	1 x 1 m	2,5	5
45 KN ET 60	Heitus I	Section verticale	2,5	diam. 8 tous les 200mm	1 X 1 111	0	2,5
KN	Troillic 2	Section horizontale	1,42	diam. 6 tous les 200mm	V	X	1,42
	Treillis 2	Section verticale	1,42	diam. 6 tous les 200mm	X	X	1,42

4. LES ANCRAGES COMPLÉMENTAIRES

DISTANCEURS


Les distanceurs servent à maintenir à distance le panneau architectonique du support.

Ils sont composés d'une tige filetée et d'un plat soudés ensemble, le plat servant à la répartition des contraintes dans le béton.

Le choix du distanceur dépend essentiellement de l'effort normal et du vide (V).

Les ancrages vent remplacent les distanceurs lorsque le panneau s'écarte du support sous l'action du vent en dépression.

- 1. Douille plastique
- 2. Distanceur

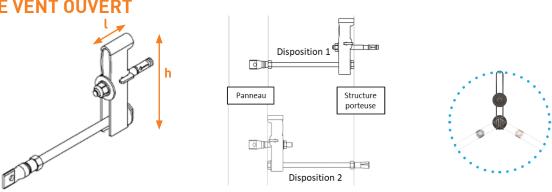
														VIDE												
		60	70	80	90	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
	60,0	M20	M20	M20	M20	M20	M24	M24	M30	M30	M30	M30	M30	M30	M36	M36	M36	M36	M36							
	45,0	M16	M20	M24	M24	M24	M24	M24	M24	M24	M24	M24	M30													
Z	35,0	M16	M16	M16	M20	M24	M24	M24	M24	M24	M24	M24	M24	M24	M30	M30	M30	M30								
Ш	25,0	M16	M20	M20	M20	M20	M20	M20	M20	M20	M20	M24														
88	20,0	M16	M20	M20	M20	M20	M20	M20	M20	M20	M20	M20	M24													
딍	15,0	M12	M12	M16	M20	M20	M20	M20	M20	M20	M20	M20	M20	M20	M20	M24	M24	M24								
	10,0	M12	M12	M12	M12	M16	M16	M16	M20																	
	5,0	M10	M10	M10	M10	M10	M12	M12	M12	M12	M12	M16	M16	M16	M16	M16	M16	M16	M16	M16	M16	M16	M16	M16	M16	M16

Valeurs données à titre indicatif pour une pression de vent de 800 Pa. Notre bureau d'étude dimensionnera pour vous les éléments nécessaires en fonction de votre situation (pression de vent, vide plus important, zone sismique,...).

ANCRAGES VENTS

L'ancrage vent remplace le distanceur dans le cas où le panneau architectonique se soulève sous l'action du vent en dépression. Comme le distanceur, il sert à éloigner le panneau architectonique du support mais reprend les efforts en dépression. Le choix de l'ancrage vent se fait en fonction du vide et de l'effort à reprendre.

ANCRAGE VENT CLASSIQUE


Le trou oblong, la rotation autour de l'axe de la cheville et le vissage/dévissage dans la douille assurent le réglage dans les trois dimensions.

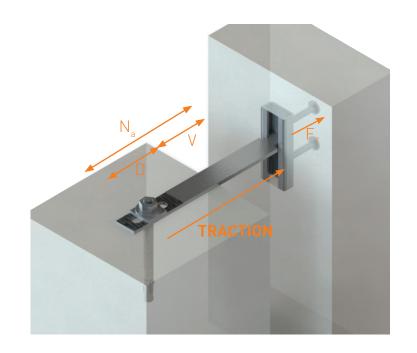
ARTICLE RÉFÉRENCE	MÉTRIQUE TIGE FILETÉE	CHEVILLE	EFFORT NORMAL ELS EN TRACTION (kN)	A (mm)	B (mm)	C (mm)	G (mm)
04IM070-04,5	M12	M12	4,5	120	60	13	13
04IM070-06,3	M16	M12	6,3	130	78	17	13
04IM070-09,0	M20	M16	9,0	145	90	21	17
04IM070-12,0	M20	M20	12,0	160	120	21	21
04IM070-12,0	M24	M20	12,0	160	120	25	21

La cheville doit être contrôlée en fonction du support (type de béton, distance au bord,...)

ANCRAGE VENT OUVERT

				Dimensions		
ARTICLE RÉFÉRENCE	MÉTRIQUE TIGE FILETÉE	CHEVILLE	NRd (kN)	h (mm)	l (mm)	
04IM071-4,4	M10	M10	4,4	138	30	
04IM071-5,2	M12	M12	5,2	140	35	
04IM071-11,0	M16	M16	11,0	188	45	
04IM071-15,6	M20	M20	15,6	228	50	

La cheville doit être contrôlée en fonction du support (type de béton, distance au bord,...)



ANCRAGE VENT AVEC TÊTE EN T : TYPE HKF

Cet ancrage permet de reprendre des charges de traction sans glissement grâce au crantage et à la plaque rainurée.

Le rail et la cheville permettent un réglage dans deux dimensions.

Pour disposer d'une dimension de réglage supplémentaire, la cheville peut être remplacée par un rail.

DIMENSIONS ET CHARGES

BOULON DE FIXATION SUR RAIL	RAILS	F _T (kN)	CHARGE ELU F _T (kN)	DISTANCE D* (mm)	DISTANCE V (mm) (TOLÉRANCE ±20mm)	DISTANCE N _A (mm) (PAS DE 25mm)	COUPLE DE SERRAGE (NM)
M10	28/15	3,5	5.0	50	0-200	50-250	15
M12	38/17	7,0	10.0	75	0-225	75-300	25
M12/M16	40/25	7,0	11.1	100	0-250	100-350	25/60
M16	49/30	12,0	17.2	150	0-200	150-350	60

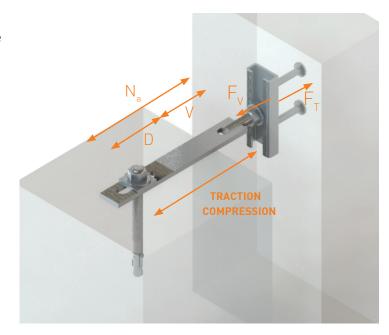
^{*} D peut être adapté selon le type de rail ou de cheville

DÉNOMINATION

TYPE	DISTANCE N _a = V + D	TYPE DE RAIL UTILISÉ	NATURE DE LA MATIÈRE
ШЕ	Na (mm) 50 I	28/15 38/17	Ez (acier électrozingué) A2 (INOX 304)
HKF	350	40/25	A4 (INOX 316)
	(par pas de 25mm)	49/30	

(Boulons FTB, rails et/ou chevilles à commander séparémment)

^{*} Nous consulter pour un calcul d'ancrage vent spécifique à votre chantier



ANCRAGE VENT AVEC BOULON FTB À TÊTE MARTEAU: TYPE HKFP

Cet ancrage permet de reprendre des charges de traction et de compression sans glissement grâce au crantage et à la plaque rainurée.

Le rail et la cheville permettent un réglage dans deux dimensions.

Pour disposer d'une dimension de réglage supplémentaire, la cheville peut être remplacée par un rail.

DIMENSIONS ET CHARGES

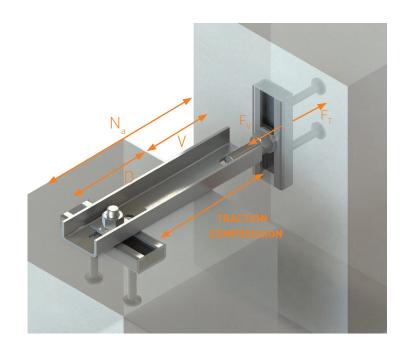
BOULON DE FIXATION SUR RAIL	RAILS	F _T (kN)	CHARGE ELU F _T (kN)	DISTANCE D* (mm)	DISTANCE V (mm) (TOLÉRANCE ±20mm)	DISTANCE N _A (mm) (PAS DE 25mm)	COUPLE DE SERRAGE (NM)
M10	28/15	3,5	5.0	50	25-125	75-175	15
M12	38/17	7,0	10.0	75	25-175	100-250	25
M12/M16	40/25	7,0	11.1	100	25-175	125-275	25/60

^{*} D peut être adapté selon le type de rail ou de cheville

DÉNOMINATION

TYPE	DISTANCE N _a = V + D	TYPE DE RAIL UTILISÉ	NATURE DE LA MATIÈRE
UVED	Na (mm) 75	28/15 38/17	EZ (acier électrozingué) A2 (INOX 304)
HKFP	350 (par pas de 25mm)	40/25 49/30	A4 (INOX 316)

(Boulons FTB, rails et/ou chevilles à commander séparémment)


^{*} Nous consulter pour un calcul d'ancrage vent spécifique à votre chantier

ANCRAGE VENT EN FORME DE U AVEC BOULON FTB À TÊTE MARTEAU SOUDÉ : TYPE HKFU

Cet ancrage permet de reprendre des charges de traction et de compression sans glissement grâce au crantage et à la plaque rainurée.

Les rails permettent un réglage dans les trois dimensions. Il est possible de remplacer le rail incorporé dans le gros-oeuvre par une cheville (distance D à adapter et perte du réglage horizontal).

DIMENSIONS ET CHARGES

BOULON FIXATION SUR RA	ON RA	AILS	F _T (kN)	CHARGE ELU F _T (kN)	DISTANCE D* (mm)	DISTANCE V (mm) (TOLÉRANCE ±20mm)	DISTANCE N _A (mm) (PAS DE 25mm)	COUPLE DE SER- RAGE (NM)
M10	28	8/15	3,5	5.0	50	25-125	75-175	15
M12	38	8/17	7,0	10.0	75	25-175	100-250	25
M12/M	16 40	0/25	7,0	11.1	100	25-175	125-275	25/60
M16	49	9/30	12,0	17.2	150	50-150	200-300	60

^{*} D peut être adapté selon le type de rail ou de cheville

DÉNOMINATION

TYPE	DISTANCE N _a = V + D	TYPE DE RAIL UTILISÉ	NATURE DE LA MATIÈRE
	Na (mm) 25	28/15 38/17	EZ (acier électrozingué)
HKFU	 350	40/25	A2 (INOX 304) A4 (INOX 316)
	(par pas de 25mm)	49/30	, (11 (11 (2) (2 1 2)

(Boulons FTB, rails et/ou chevilles à commander séparémment)

^{*} Nous consulter pour un calcul d'ancrage vent spécifique à votre chantier

GOUPILLAGE

Le goupillage permet la solidarisation des panneaux entre eux ainsi que la transmission des charges horizontales d'un panneau à l'autre au moyen d'une goupille scellée dans le chant des deux panneaux.

Le goupillage se compose de:

1. Un manchon cylindrique en polyéthylène dans le chant inférieur du panneau supérieur

ARTICLE	L(MM)	Ø(MM)
04M031-12-80	80	12
04M031-16-80	80	16
04M031-20-80	80	20

2. Un axe en acier inoxydable

ARTICLE	L(MM)	Ø(MM)	Vrd (kN)	EPAISSEUR EP MIN (mm)
04M051-12-170	170	12	4.68	80
04M051-16-170	170	16	5.22	100
04M051-20-170	170	20	5.42/7.59*	120

Panier d'armature à fournir, voir avec notre bureau d'étude.

Joint maximum : 20 mm

3. Un manchon ovale en polyéthylène dans le chant supérieur du panneau inférieur

ARTICLE	L(MM)	Ø(MM)
04M051-12-170	100	22/47
04M051-16-170	100	22/47
04M051-20-170	95	35/60
04M051-24-170	95	35/60

Autres diamètres et charges sur demande

5. ANCRAGE ANTI-SISMIQUE (AS)

Le système Fixi3D 2.0 est adaptable à la sollicitation sismique.

Depuis janvier 2011, l'Eurocode 8-1 est d'application en France, rendant obligatoire la prise en compte des risques sismiques dans la conception et la construction des bâtiments, cette disposition s'applique aussi aux panneaux rapportés en isolation par l'extérieur.

Pour répondre aux contraintes sismiques, le Fixi3D 2.0 doit être complété par un système dimensionné pour reprendre les efforts parallèles. En plus de nos fixations sous agrément technique, nous pouvons compléter la solution pour offrir une réponse suivant le niveau de sismicité.

Ces dispositifs anti-sismiques participent à la stabilité des panneaux architectoniques lors d'un séisme. Ils sont destinés à reprendre les efforts sismiques horizontaux (normaux et parallèles à la façade du bâtiment). Ces fixations se déclinent en 5 classes distinctes en fontion des charges.

Le système est conçu de façon à permettre un réglage (tolérance) dans les 3 directions.

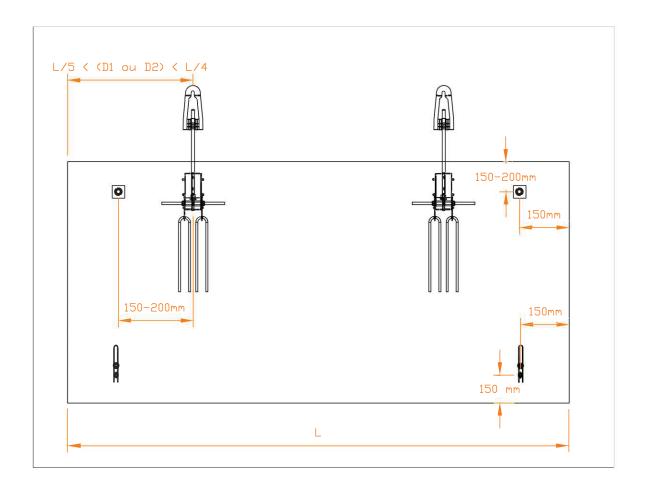
Des douilles spécialement développées permettent la fixation du système aux éléments architectoniques. Du côté de la structure porteuse, la liaison est assurée par des chevilles (sous ATE) ou des boulons quand il s'agit d'une structure métallique.

ANCRAGE ANTI-SISMIQUE (AS) - TABLEAU ANTI-SISMIQUE (AS)

Tableau de charge pour un vide de 300 mm

	VRd (KN)	M _{Rd} (kN.cm)	MÉTRIQUE DOUILLES	EPAISSEUR MIN (mm)	DISTANCE AU BORD MINIMALE C (mm)	ENTRAXE DOUILLES (mm)
AS1	4,1	123,6	M10	70	120	158,5
AS2	8,2	247,3	M12	75	135	192,5
AS3	12,4	371,1	M16	80	150	210,5
AS4	17,6	529,3	M20	100	175	238,5
AS5	22,9	687,6	M20	120	200	278,5

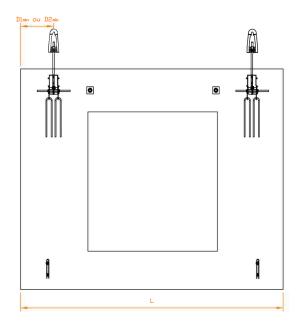
Remarque : un ferraillage spécifique est à prévoir au niveau des douilles insérées dans l'élément préfabriqué (information disponible sur demande).



6.IMPLANTATION DES FIXATIONS

POSITIONNEMENT DE PRINCIPE DES ANCRAGES

Les distances au bord minimales à respecter sont reprises dans les tableaux de la page 18


DISTANCES AUX BORDS CONSEILLÉES

Le distanceur est choisi en fonction de la classe de suspente et de l'effort en compression. Voir tableau page 12.

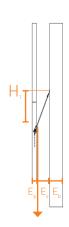
DISTANCES AUX BORDS MINIMALES

Deux types de montage de barres de scellement peuvent être envisagés en fonction de la classe de la suspente et de la distance au bord du panneau :

- Une barre droite et deux barres en U
- Quatre barres en U

Afin de respecter un enrobage de 25mm des barres de scellement, il convient de respecter les distances au bord minimales en fonction du type de montage ci-dessous :

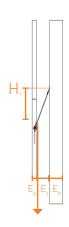
DISTANCE MINIMALE ENTRE LE MILIEU DE L'INSERT ET LE BORD DU PANNEAU								
CLASSE	D1 MINI. (mm)	D2 MINI. (mm)	D1	D2				
5	76	125	A	W				
10	76,5	150		180				
15	83,5	150	4					
20	84	175						
25	93	-						
35	93,5	-						
45	103,5	-	MM	фф				
60	104,5	-						


Attention : Ne sont représentés dans les exemples suivants que les panneaux standards, ces situations ne sont pas représentatives de tous les cas.

TIGE FILETÉE: COMPOSANT D'ASSEMBLAGE

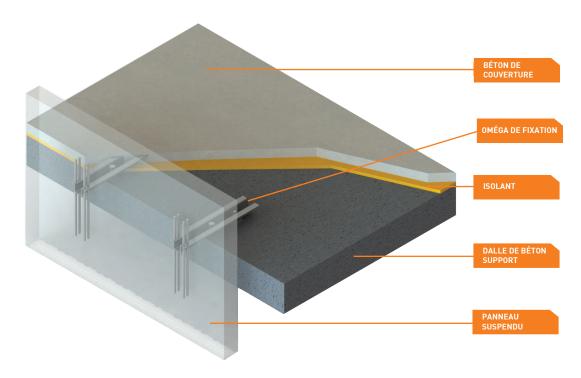
La longueur totale de la tige filetée (L) dépend de la classe de la suspente, du vide (Ev), de l'épaisseur du panneau (Ep) et du type de la platine choisie. Ces valeurs sont reprises dans le tableau page 6 et 8 qui reprennent les valeurs minimales pour ces dimensions (Ev et Ep). Les longueurs H₁ et L de la tige filetée sont à choisir dans les tableaux ci-dessous :

LONGUEUR DE LA TIGE FILETÉE EN FONCTION DU VIDE - PLATINE SIMPLE


LONGUEUR DE LA TIGE FILETÉE L EN FONCTION DU VIDE – PLATINE SIMPLE - ANGLE DE 20°													20°	
TYPE DE SUSPENTE		VIDE (mm)												
	60	70	80	90	100	110	120	130	140	150	160	170	180	
5 simple	192	221	250	280	309	338	367	397	426	455	484	514	543	
10 simple	175	204	233	262	292	321	350	379	409	438	467	496	526	
15 simple	176	205	234	264	293	322	351	381	410	439	468	498	527	
20 simple			220	249	278	307	337	366	395	424	454	483	512	
25 simple			240	270	299	328	357	387	416	445	474	504	533	
35 simple			248	278	307	336	365	395	424	453	482	511	541	
45 simple			281	311	340	369	398	427	457	486	515	544	574	
60 simple				310	340	369	398	427	456	486	515	544	573	
LONGUEUR DE LA TIGE	FILET	ÉE L E	N FO	NCTIO	N DU V	VIDE -	PLAT	INE SI	MPLE	- ANG	E DI	E 20°		

LONGUEUR DE LA TIGE FILETÉE L EN FONCTION DU VIDE – PLATINE SIMPLE - ANGLE DE 20°												
TYPE DE SUSPENTE	VIDE (mm)											
TIPE DE SUSPENTE	190	200	210	220	230	240	250	260	270	280	290	300
5 simple	572	601	631	660	689	718	748	777	806	835	864	894
10 simple	555	584	613	643	672	701	730	759	789	818	847	876
15 simple	556	585	614	644	673	702	731	761	790	819	848	878
20 simple	541	570	600	629	658	687	717	746	775	804	834	863
25 simple	562	591	621	650	679	708	738	767	796	825	854	884
35 simple	570	599	628	658	687	716	745	775	804	833	862	892
45 simple	603	632	661	691	720	749	778	808	837	866	895	925
60 simple	603	632	661	690	720	749	778	807	837	866	895	924

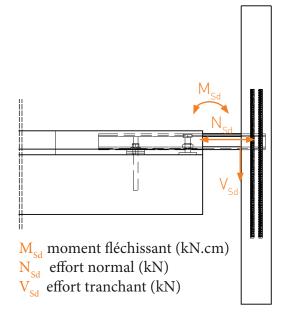
DISTANCE VERTICALE ENTRE LE HAUT DE L'INSERT ET LA CHEVEILLE : H1



DISTANCE VERTICALE INSERT - CHEVILLE H ₁ EN FONCTION DU VIDE – PLATINE SIMPLE - ANGLE DE 20°													E -
TYPE DE SUSPENTE	VIDE (MM)												
	60	70	80	90	100	110	120	130	140	150	160	170	180
5 simple	138	165	193	220	248	275	303	330	357	385	412	440	467
10 simple	135	163	190	218	245	273	300	328	355	383	410	437	465
15 simple	131	158	186	213	241	268	296	323	351	378	406	433	460
20 simple			187	214	242	269	297	324	352	379	407	434	461
25 simple			161	188	215	243	270	298	325	353	380	408	435
35 simple			160	187	215	242	270	297	325	352	380	407	435
45 simple			186	214	241	269	296	324	351	378	406	433	461
60 simple				213	240	268	295	323	350	377	405	432	460
DISTANCE VERTICALE INSEI	DISTANCE VERTICALE INSERT - CHEVILLE H, EN FONCTION DU VIDE - PLATINE SIMPLE - ANGLE DE 20°											GLE D	

DISTANCE VERTICALE INSERT - CHEVILLE H, EN FONCTION DU VIDE – PLATINE SIMPLE - ANGLE DE 20°												
TYPE DE SUSPENTE	VIDE (MM)											
	190	200	210	220	230	240	250	260	270	280	290	300
5 simple	495	522	550	577	605	632	660	687	715	742	770	797
10 simple	492	520	547	575	602	630	657	685	712	740	767	795
15 simple	488	515	543	570	598	625	653	680	708	735	763	790
20 simple	489	516	544	571	599	626	654	681	709	736	764	791
25 simple	463	490	518	545	573	600	628	655	683	710	738	765
35 simple	462	490	517	545	572	600	627	655	682	709	737	764
45 simple	488	516	543	571	598	626	653	681	708	736	763	791
60 simple	487	515	542	570	597	625	652	680	707	735	762	790

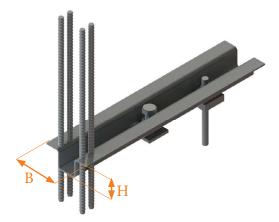
7. OMÉGAS



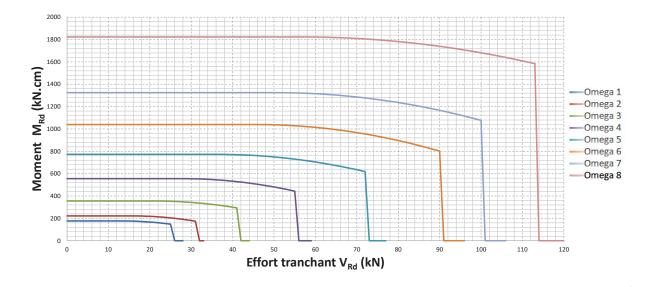
L'utilisation des omégas est une solution efficace pour la fixation des allèges sur les dalles.

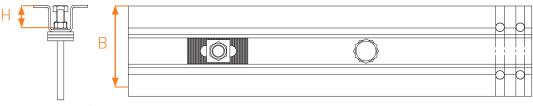
Les omégas reprennent à la fois les efforts liés au poids du panneau et au vent, par l'intermédiaire d'une seule pièce, contre trois pour le système FIXI3D classique.

Ce système offre de nombreux avantages :


- Pas de pont thermique linéaire
- Pont thermique faible (diminution plus importante par l'utilisation de l'inox)
- Montage rapide et ajustable
- Pas d'étais
- Deux fixations par élément au lieu de quatre
- Réglage dans les 3 dimensions

Il faut compter au moins deux omégas de fixation par panneau. Le dimensionnement doit être effectué suivant la note de calcul pages 26-27.


Les variations de longueur liées à la dilatation thermique sont prises en compte, un joint de dilatation (polystyrène 5 mm) doit être déposé lors de la pose de l'oméga. Ce joint de dilatation est inutile lorsque l'oméga n'est pas coulé dans le béton de couverture.



A. GAMME DES OMÉGAS DE FIXATION

DÉSIGNATIO	N	oméga 1	oméga 2	oméga 3	oméga 4	oméga 5	oméga 6	oméga 7	oméga 8
Hauteur (H)	(mm)	44	50	54	66	70	83	84	85
Largeur (B)	(mm)	74	79	92	117	125	135	148	159
Epaisseur de l'élément avec enrobage de l'armature (Emin)	(mm)	100	100	110	120	130	135	150	150
M_Rd	(kN.cm)	177	222	355	555	773	1039	1324	1823

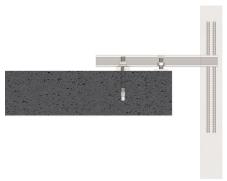
B. GRAPHIQUE D'INTERACTION M_{Rd} & V_{Rd}

C. CHOIX DU SYSTÈME DE FIXATION

Selon l'intensité des efforts à reprendre et le mode opératoire de montage sur chantier, le choix est opéré parmi trois types de fixations :

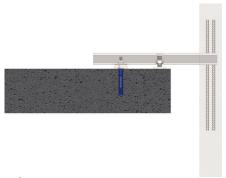
1. Fixation à l'aide d'un rail d'ancrage

Les caractéristiques des rails sont :


- Efforts élevés sur les rails
- Rapidité de montage car déjà intégrés à la dalle. Leurs positionnements nécessitent une collaboration avec le bureau d'études gros oeuvre afin de bien les implanter dans la structure portante

2. Fixation à l'aide d'une cheville mécanique

Les caractéristiques des chevilles mécaniques sont :


- Efforts élevés sur les chevilles
- Chevilles à forer sur place (pas de risque de mauvaise implantation)

3. Fixation à l'aide d'une cheville chimique

Les caractéristiques des chevilles chimiques sont :

- Efforts très élevés sur les chevilles
- Chevilles à forer sur place (pas de risque de mauvaise implantation)

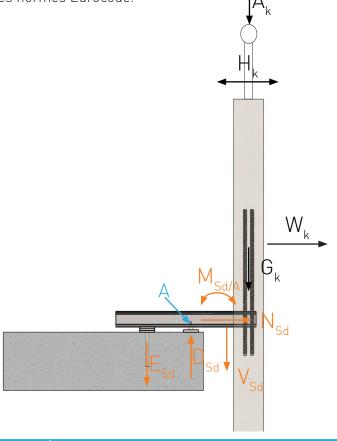
D. NOTE DE CALCUL

Les omégas pour allèges sont dimensionnés suivants les normes Eurocode.

Normes:

- Eurocode 1 (EN 1991)
- Eurocode 2 (EN 1992)
- Eurocode 3 (EN 1993)

Coefficients de sécurité partiels :


 $\gamma_{\rm G} = 1.35$ (charges permanentes)

 $\dot{\mathbf{Y}}_{\rm Q}$ = 1.50 (charges d'exploitation ou climatiques) Le choix de l'oméga adapté se fait par le calcul du mor et du cisaillement ($V_{\rm Sd}$) aupoint de chargement A.

Vérification additionelle :

Vérification en service Il faut parfois faire des vérifications supplémentaires :

- Déformations
- Risques de vibrations
- Instabilités liées à l'aléa sismique

CHARGES APPLIQUÉES									
G_{κ}	kN.m ⁻¹	Poids propre de l'allège							
\mathbf{A}_{K}	kN.m ⁻¹	Surcharge verticale							
H _K	kN.m ⁻¹	Charge sur le garde-corps							
W _K	kN.m ⁻¹	Charge due au vent							
	EFFORTS DIMENSIONNANTS								
M_{Sd}	kNm	Moment fléchissant							
\mathbf{V}_{Sd}	kN	Effort de cisaillement							
$N_{\sf Sd}$	kN	Effort normal							
E _{sd}	kN	Réaction du support en traction							
D_sd	kN	Réaction du support en compression							

APPLICATION

Effort de cissaillement :

 $V_d = Y_G . G_k + Y_G . A_k$

Effort normal:

$$N_d = V_0 \cdot H_k + V_w \cdot W_k$$

Effort normal:

w = e + 0.5f + 50mm

e = distance entre le panneau et le bord de la dalle support

f = épaisseur du panneau

h_w = distance entre le centre de gravité du panneau et le sommet de la dalle

 $\rm h_{H}^{}$ = distance entre le lieu de la charge ponctuelle et le sommet de la dalle

Le maximum est atteint au point A:

$$M_{d} = \mathbf{Y}_{G} \cdot (A_{k} + G_{k}) \cdot w + \mathbf{Y}_{Q} \cdot h_{H} + \mathbf{Y}_{w} \cdot W_{k} \cdot h_{w}$$

$$M_{d.adm} = M_{d}$$

$$\underline{h}$$

avec n = le nombre d'omégas par allège, n=2 sauf exception.

Répartition des omégas

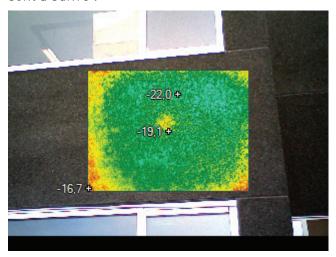
Les omégas doivent être positionnés de part et d'autre du centre de gravité pour assurer une répartion égale des charges.

Effort horizontal:

Un striage couplé à des plaques crantées permettent la reprise de l'effort horizontal.

Installation de l'oméga:

Le réglage en hauteur se fait au moyen de cales.


Lors de la dernière étape, le vide résiduel peut être rempli de mortier anti-retrait.

8. PONTS THERMIQUES

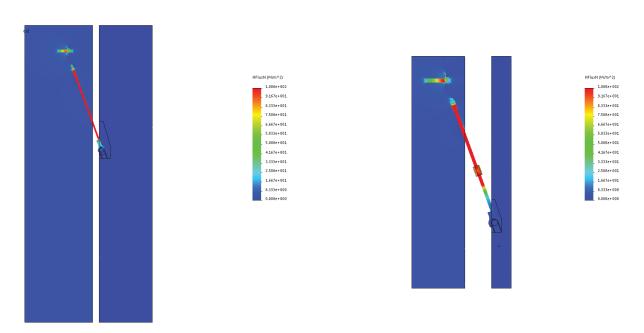
Depuis 2012, Fixinox est pionnier dans le calcul exact des ponts thermiques engendrés par les fixations traversant l'isolant. Partant de constats simples, nous revendiquons des solutions parmi les meilleures du marché sur le plan des ponts thermiques liés à la présence de fixations.

Sans même entrer dans le détail des calculs par simulation numérique, trois recommandations de bon sens sont à suivre :

- Avoir le plus faible nombre de ponts thermique et donc de fixations traversant l'isolant
- Avoir les plus petites sections possibles de fixation, en privilégiant par exemple les matériaux avec les meilleures caractéristiques mécaniques
- Enfin, se tourner vers des matériaux avec la conductivité thermique la plus faible possible

L'acier inoxydable remplit ces trois conditions avec succès. Même s'il existe des matériaux moins conducteurs tels que le bois ou des éléments composites en fibre de verre et résine, l'acier inoxydable apporte en plus la meilleure résistance au feu possible des différents matériaux utilisés aujourd'hui comme système de fixation de façade ainsi qu'une plus grande pérénnité.

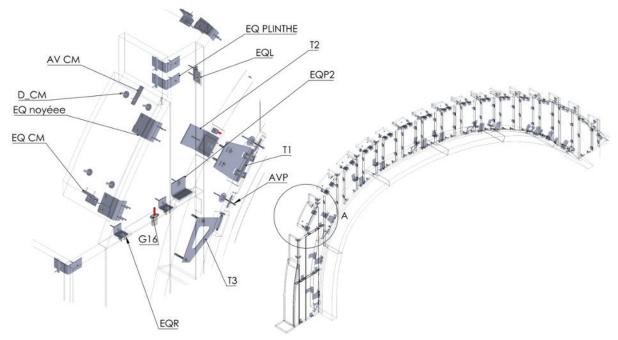
MATIÈRE	CONDUCTIVITÉ THERMIQUE COURANTES À 23°C
Aluminium	200 W m ⁻¹ K ⁻¹
Acier	50 W m ⁻¹ K ⁻¹
Acier inoxydable	17 W m ⁻¹ K ⁻¹


9. RÉFÉRENCES :

Appliqué aux fixations pour béton, Fixinox a déjà collaboré sur des projets leaders pour lesquels une étude précise et une note de calcul ont été réclamées par le responsable PEB du chantier ayant la responsabilité du coefficient K du bâtiment et de la future consommation de l'ouvrage terminé :

KU LEUVEN CAMPUS, BRUGES (BELGIQUE)

Architecte: ABCIS Architectes



MONTAGNE DU PARC, SIÈGE BNPPF, BRUXELLES (BELGIQUE)

Architectes: Baumshlager Eberle & Jaspers-Eyers Certificat obtenu : BREEAM Excellent

Pour ce chantier une solution particulière a été calculée et développée par notre bureau d'étude. Nous proposons notre créativité technique pour toute réalisation hors standard.

LA MÉCA : LA MAISON DE L'ÉCONOMIE CRÉATIVE ET CULTURELLE EN NOUVELLE-AQUITAINE

Architecte : Bjarke Ingels Zone sismique 2 : catégorie 3

2 ATEX de cas B réalisés auprès du CSTB

NOTES			

1 FIXINOX BELGIQUE

Siège Social

Z.I. de Jumet - Première rue, 8 - 6040 Jumet (Charleroi) Tél. : +32 71 81 05 26 - Fax : +32 71 81 05 29 - info@fixinox.be

Siège d'Anvers

4c IZ De Zwaan-Jagersdreef, 2900 Schoten

Tél.: +32 3 227 57 00 - Fax: +32 3 227 57 02 - info.antwerpen@fixinox.be

FIXINOX FRANCE

Laurent Calia

+33 6 09 49 47 55 - calia.l@fixinox.be

PAYS-BAS
Ed Van der Zande

+31 681 344 769 - ed.vanderzande@fixinox.com

INTERNATIONAL
Frédéric Raquet
+32 479 32 38 37 -frederic.raquet@fixinox.be

FIXINOX PRÉSENT SUR LES GRANDS SITES D'EXCEPTIONS

Hôtel de Police Charleroi,BE

Ecole de la Biodiversité **BOULOGNE, FR**

MG Tower

Gallerie Foksal Varsovie, PL